
ARRAYS IN BASIC

TABLE OF CONTENTS
=================

1. Arrays as Variables p.1

2. Examples of Array Usage p.6

--
This document was written by Ken Karp for posting on the

QuickBASIC conference of MicroSellar BBS. Thanks to Terri Karp for
valuable assistance in editing. For more information about BASIC
programming, and QuickBASIC in particular, register with the
MicroSellar BBS at (201) 239-1346 (modem). Registration is free.
Participation is welcome.

ARRAYS IN BASIC

1. ARRAYS AS VARIABLES

When a BASIC program is running, the first time a reference is
made to a particular variable, a `box' is created for that variable in
the computer's memory.

Examine the following BASIC program segment:

' / Input a value from the
INPUT VAR1% ' < keyboard and set VAR1

' \ equal to it
VAR1% = VAR1% + 10 'manipulate the variable
PRINT "The value of VAR1 is";VAR1% 'output the value

Let's focus in on the first statement. If this is the first
reference to VAR1%, the computer will set aside a box for it:

��������

VAR1% � �

��������

When we think of the value of VAR1%, we can think of whatever is inside
the box. Thus, when the BASIC statement

' / Input a value from the
INPUT VAR1% ' < keyboard and set VAR1

' \ equal to it

is encountered, a check is made to see if a box had previously been
created for VAR1%. If no box is found, one will be created, and only
after that is done will the "INPUT" part of the statement be performed.
If the user enters the value 21 to the INPUT prompt, we will have the
following:

��������

VAR1% � 21 �

��������

In light of all this, our second statement takes on the following
meaning: "go get the value that is stored in the box for VAR1%; add
10 to it; store the result back in the box for VAR1%". Thus, after
the statement

VAR1% = VAR1% + 10 'manipulate the variable

1

ARRAYS IN BASIC

has executed, we have:
��������

VAR1% � 31 �

��������

Finally, the third statement

PRINT "The value of VAR1 is";VAR1% 'output the value

will get the value that is stored in the box for VAR1%; and then print
it. Although VAR1% box is referenced by this statement, its contents
remain unchanged, and as our program segment finishes, we still have:

��������

VAR1% � 31 �

��������

Pursuing this analogy, an array is nothing more than a whole bunch
of the same type of boxes. The BASIC DIM statement is used to announce
that a certain number of boxes are being set aside, AND that they are
to be referred to by a certain name. Thus, the BASIC statement

DIM GRADES%(10)

will set aside 10 [*] integer boxes each of which are to be referred
to using the name GRADES%. Each of the 10 boxes is capable of holding
a value, just like VAR1% in the example above. In effect, we can
imagine the boxes to look something like this:

--
* - Actually, the statement will set aside 11 boxes, numbered 0
through 10; but for purposes of this discussion, it is simpler to
assume 10 boxes. QuickBASIC users, look up OPTION BASE in your manual.

2

ARRAYS IN BASIC

GRADES%

��������

1 � �

�������$

2 � �

�������$

3 � �

�������$

4 � �

�������$

5 � �

�������$

6 � �

�������$

7 � �

�������$

8 � �

�������$

9 � �

�������$

10 � �

��������

But how (the attentive student will ask) are the 10 boxes
distinguished from each other if they are all called GRADES%? Simple:
by putting the number of the box desired in parentheses immediately
following the word GRADES%. Thus,

FIRSTGRADE% = GRADES%(1)

will find the first of the 10 boxes associated with the name GRADES%,
extract the value currently found there, and place it into some other
box, called FIRSTGRADE%.

GRADES%(4) = FOURTHONE%

will copy the value currently in the box named FOURTHONE% into the
fourth box associated with the variable name GRADES%.

In BASIC, the number inside the parentheses is called the
"subscript", and arrays are often called "subscripted variables". It
is important to note that the subscript itself may be a variable.
Observe the following program segment:

3

ARRAYS IN BASIC

PRINT "Here are the class's grades:" 'print an introduction
FOR N%=1 TO 10 'do something 10 times

PRINT GRADES%(N%) 'print what's in the Nth box
NEXT

If we had:
GRADES%

��������

1 � 94 �

�������$

2 � 97 �

�������$

3 � 83 �

�������$

4 � 91 �

�������$

5 � 79 �

�������$

6 � 82 �

�������$

7 � 92 �

�������$

8 � 88 �

�������$

9 � 100 �

�������$

10 � 89 �

��������

prior to executing the loop, we would see results something like this
on our screen:

Here are the class's grades:
94
97
83
91
79
82
92
88
100
89

Why? Since the variable N% is used as the counter in the FOR loop,
each time the statement:

4

ARRAYS IN BASIC

PRINT GRADES%(N%) 'print what's in the Ith box

is executed, N% has a value one greater than the last time it was
executed; therefore, the SUBSCRIPT into GRADES% causes the program to
look at the NEXT numbered box.

5

ARRAYS IN BASIC

2. EXAMPLES OF ARRAY USAGE

There are three QuickBASIC examples of array usage distributed
with this discussion. They are

ONE-D.BAS
TWO-D.BAS
THREE-D.BAS

ONE-D.BAS employs a one dimensional array called CITIES$(). A one
dimensional array in BASIC uses only one subscript in all references to
the array (in the above example GRADES%() is a one dimensional array).
ONE-D.BAS reads in a list of city names from DATA statements and stores
them in CITIES$(). It then prints out the same list of cities from
CITIES$().

If a BASIC array has two subscripts it is referred to as a two
dimensional array. An example of a two dimensional array is TEMPS(),
found in TWO-D.BAS. The statement

DIM, TEMPS(100,4)

sets aside storage for a 100x4 (actually 101x5 -- TEMPS(0,0) is valid
and may be used if desired!!) array. Notice the FOR-NEXT loop in the
subroutine READINDATA: each time the loop counter (I) varies (ie, with
each iteration of the loop), we read in an entire row of data (ie,
TEMPS(I,1), TEMPS(I,2), TEMPS(I,3), & TEMPS(I,4)). The same stragegy
is used when the values are printed out.

The final example program, THREE-D.BAS, takes us one step further:
now we have added a third dimension. TEMPS() uses its first dimension
for the city; its second dimension for the particular data in question
(ie, high temperature, low temperature, rainfall, or wind speed); and
its third dimension for the day of the week (Sunday through Saturday).
Just as a two dimensional array may be conceptualized as a table of
values, a three dimensional array may be conceptualized as an
accountant's ledger: when the ledger is open to Sunday, you see before
you a table of figures (a two dimensional array!); when you turn the
page to Monday, you see a similar table, but the actual figures may
differ; when you turn to Tuesday, again the figures may differ. In
actual fact, TEMPS() is a 4x100x6 structure: 2400 integers, all
referenced by the name TEMPS().

The program THREE-D.BAS prints all the weather information for the
22 cities for a certain day of the week. By pressing <PgUp> or <PgDn>

6

ARRAYS IN BASIC

the user can print the same information for a different day of the
week. To do this, the subroutine PRINTOUTDATA holds the third
subscript steady (variable DAY is set before PRINTOUTDATA is called)
while varying the other two subscripts. This yields a two dimensional
cross-section of our three dimensional array: ie, all the weather
information for all the cities, but only for a particular day. In
fact, that is the two dimensional array we see on the screen.

QuickBASIC users will note that v3.0 allows up to 63 dimensions
for an array! That is to say

DIM ARRAYNAME (d1,d2,d3,d4, ... ,d63)

would set aside storage for d1xd2xd3xd4x ... xd63 array elements -- a
very large data structure indeed! In actual practice, arrays of more
than two or three dimensions are rarely used. It should be easy to see
why.

7

